ETH Kipu
  • Ethereum Developer Pack
  • Módulo 1
    • Intro a Smart Contracts
      • Fundamentos de Blockchain
        • Antecedentes
        • Bitcoin
        • Qué es Blockchain
        • Conceptos Clave en Blockchain
        • Cómo funciona la Blockchain
        • Tipos de Blockchain
        • Modelos de Consenso
      • El nuevo Internet
        • Web 3
        • Elementos Fundamentales
        • Impacto de Ethereum en Diversos Sectores
      • Wallets
        • Componentes de una wallet
        • Tipos de Wallet
        • Códigos mnemónicos
      • Ethereum 101
        • Smart Contracts
        • Cuentas
          • Tipos de cuentas
          • Contenido de cuentas
        • Transacciones
          • Componentes
          • Ciclo de vida
        • Gas
        • Solidity
        • EVM
          • La máquina de estados
          • Opcodes
          • Cómo funciona la EVM
          • Clientes de ejecución
          • DApps
      • Blockchain Explorer
        • Funciones de un blockchain explorer
        • Beneficios de utilizar un blockchain explorer
      • Remix
        • Características de Remix
        • Workspaces o espacios de trabajo
        • Cargar y compilar un contrato
        • Desplegar en la máquina virtual de Remix (Remix VM)
        • Interactuando con funciones
        • Desplegar en una red pública
      • Crea tu primer Smart Contract
  • Módulo 2
    • Fundamentos de Solidity
      • Hello World
      • Tipos de Datos
      • Funciones
      • Variables
        • Ejercicio 1
      • Operadores
        • Ejercicio 2
      • Constructor
        • Ejercicio 3
      • Convenciones de nomenclatura
      • Tipos de almacenamiento para variables
      • Estructuras de Control
        • Ejercicio 4
      • Modificadores
      • Eventos
        • Ejercicio 5
      • Tipos de Referencia
        • Arrays
          • Ejercicio 6
        • Mappings
          • Ejercicio 7
        • Structs
          • Ejercicio 8
      • Address Payable
      • Cómo reciben Ether los contratos y funciones
      • Transferencias de Ether
      • Conceptos Avanzados
        • Codificación ABI
        • Hashing
        • This
        • Herencia
        • Abstract
        • Interface
        • Llamadas entre contratos
        • EVM
        • ABI
        • Bytecode
        • Opcodes
  • Módulo 3
    • Estándares, Librerías y Patrones
      • Buenas Prácticas de Diseño
      • Patrones de Diseño
      • EIP y ERC
      • ERC-20
      • ERC-721
      • Open Zeppelin
      • Crea un Token ERC-20
      • Almacenamiento Descentralizado: IPFS
      • Crea un Token ERC-721
      • DeFi
  • Módulo 4
    • Toolkit para desarrollo en Ethereum
      • Requisitos para el módulo 4
        • Terminal
        • Git y Github
        • Node.js y npm
        • Visual Studio Code para Solidity
      • Toolkit
        • JSON-RPC
        • Ethers.js
          • Ejercicio
        • Hardhat
          • Despliegue de un contrato en Hardhat
          • Despliegue de un contrato en una red pública
        • Scaffold-ETH
          • Características
          • Cómo instalar Scaffold-ETH
  • Módulo 5
    • Seguridad, Pruebas y Auditoría
      • Pruebas
        • Importancia de realizar pruebas
        • Métodos para probar contratos inteligentes
          • Pruebas automatizadas
          • Pruebas manuales
        • Conceptos importantes en testing
        • Herramientas para testing
        • Testing con Hardhat
        • Recursos adicionales
      • Seguridad
        • Una mentalidad distinta de diseño
        • Principales vulnerabilidades en smart contracts
          • Reentrancy attack (ataque de reentrada)
          • Replay attack (ataque de repetición)
          • Price Oracle Manipulation (Manipulación de Oráculos de Precios)
          • Missing Access Control (Pérdida de Control de Acceso)
          • Reward Manipulation (Manipulación de Recompensas)
          • Failure to Initialize (Falla al Inicializar)
          • Front-running
          • Invariant Breaks (Ruptura de invariantes)
          • Mishandling of ETH (Mal manejo de ETH)
          • Denial of Service (DoS - Denegación de Servicio)
          • Integer overflow and underflow (desbordamiento y subdesbordamiento de enteros)
          • Phishing y Typosquatting
        • Recursos adicionales
      • Auditoría de smart contracts
        • Proceso de Auditoría
        • Herramientas
        • Cómo prepararse para una auditoría
        • El test Rekt
        • Retos
        • Recursos adicionales
  • Contribuye
    • Kipu Explorer
Powered by GitBook
On this page
  • Funciones Requeridas:
  • Eventos Requeridos:

Was this helpful?

  1. Módulo 3
  2. Estándares, Librerías y Patrones

ERC-20

El estándar ERC-20 es un estándar de tokens en la blockchain de Ethereum que define un conjunto común de reglas para los tokens emitidos mediante contratos inteligentes. Los tokens ERC-20 son activos digitales que pueden representar cualquier cosa, desde monedas virtuales hasta derechos de voto, pasando por certificados de propiedad y más. Este estándar permite la interoperabilidad entre diferentes aplicaciones y contratos en el ecosistema Ethereum, facilitando a los desarrolladores la implementación de tokens que funcionarán de manera consistente en una amplia gama de servicios y billeteras.

Un contrato inteligente ERC-20 debe implementar las siguientes funciones y eventos:

Funciones Requeridas:

  • totalSupply(): Devuelve la cantidad total de tokens existentes.

  • balanceOf(address account): Muestra la cantidad de tokens que tiene una dirección específica.

  • transfer(address recipient, uint256 amount): Permite a una dirección enviar una cantidad de tokens a otra.

  • allowance(address owner, address spender): Muestra la cantidad de tokens que el dueño permite a otra dirección gastar en su nombre.

  • approve(address spender, uint256 amount): Permite a un gastador retirar tokens hasta una cantidad máxima.

  • transferFrom(address sender, address recipient, uint256 amount): Permite a un gastador transferir tokens en nombre de otra dirección, dentro del límite establecido por approve.

Eventos Requeridos:

  • Transfer(address indexed from, address indexed to, uint256 value): Debe emitirse cuando los tokens pasen de una dirección a otra.

  • Approval(address indexed owner, address indexed spender, uint256 value): Debe emitirse cuando una dirección aprueba a otra para gastar tokens en su nombre.

Aquí tienes un ejemplo simplificado de un contrato ERC-20:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

contract SimpleERC20Token {
    string public constant name = "SimpleERC20Token";
    string public constant symbol = "SET";
    uint8 public constant decimals = 18;

    event Transfer(address indexed from, address indexed to, uint256 value);
    event Approval(address indexed owner, address indexed spender, uint256 value);

    mapping(address => uint256) balances;
    mapping(address => mapping(address => uint256)) allowed;
    uint256 totalSupply_;

    constructor(uint256 total) {
        totalSupply_ = total;
        balances[msg.sender] = totalSupply_;
    }

    function totalSupply() public view returns (uint256) {
        return totalSupply_;
    }

    function balanceOf(address tokenOwner) public view returns (uint256) {
        return balances[tokenOwner];
    }

    function transfer(address receiver, uint256 numTokens) public returns (bool) {
        require(numTokens <= balances[msg.sender]);
        balances[msg.sender] = balances[msg.sender] - numTokens;
        balances[receiver] = balances[receiver] + numTokens;
        emit Transfer(msg.sender, receiver, numTokens);
        return true;
    }

    function approve(address delegate, uint256 numTokens) public returns (bool) {
        allowed[msg.sender][delegate] = numTokens;
        emit Approval(msg.sender, delegate, numTokens);
        return true;
    }

    function allowance(address owner, address delegate) public view returns (uint) {
        return allowed[owner][delegate];
    }

    function transferFrom(address owner, address buyer, uint256 numTokens) public returns (bool) {
        require(numTokens <= balances[owner]);
        require(numTokens <= allowed[owner][msg.sender]);

        balances[owner] = balances[owner] - numTokens;
        allowed[owner][msg.sender] = allowed[owner][msg.sender] - numTokens;
        balances[buyer] = balances[buyer] + numTokens;
        emit Transfer(owner, buyer, numTokens);
        return true;
    }
}
PreviousEIP y ERCNextERC-721

Last updated 8 months ago

Was this helpful?

También puedes ver la implementación de Open Zeppelin en:

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol